Profilin induces lamellipodia by growth factor-independent mechanism.
نویسندگان
چکیده
Profilin has been implicated in cell motility and in a variety of cellular processes, such as membrane extension, endocytosis, and formation of focal complexes. In vivo, profilin replenish the pool of ATP-actin monomers by increasing the rate of nucleotide exchange of ADP-actin for ATP-actin, promoting the incorporation of new actin monomers at the barbed end of actin filaments. For this report, we generated a membrane-permeable version of profilin I (PTD4-PfnI) for the alteration of intracellular profilin levels taking advantage of the protein transduction technique. We show that profilin I induces lamellipodia formation independently of growth factor presence in primary bovine trabecular meshwork (BTM) cells. The effects are time- and concentration-dependent and specific to the profilin I isoform. Profilin II, the neuronal isoform, failed to extend lamellipodia in the same degree as profilin I. H133S, a mutation in the polyproline binding domain, showed a reduced ability to induce lamellipodia. H199E, mutation in the actin binding domain failed to induce membrane spreading and inhibit fetal bovine serum (FBS) -induced lamellipodia extension. Incubation with a synthetic polyproline domain peptide (GP5)3, fused to a transduction domain, abolished lamellipodia induction by profilin or FBS. Time-lapse microscopy confirmed the effects of profilin on lamellipodia extension with a higher spreading velocity than FBS. PTD4-Pfn I was found in the inner lamellipodia domain, at the membrane leading edge where it colocalizes with endogenous profilin. While FBS-induced lamellipodia formation activates Rac1, PTD4-Pfn I stimulation did not induce Rac1 activation. We propose a role of profilin I favoring lamellipodia formation by a mechanism downstream of growth factor.
منابع مشابه
Profilin 1 is required for abscission during late cytokinesis of chondrocytes.
Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondro...
متن کاملMammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins.
Human neutrophils contain a complex of proteins similar to the actin-related protein 2/3 (Arp2/3) complex of Acanthamoeba. We have obtained peptide sequence information for each member of the putative seven-protein complex previously described for Acanthamoeba and human platelets. From the peptide sequences we have identified cDNA species encoding three novel proteins in this complex. We find t...
متن کاملRIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion.
The small GTPase Rap1 induces integrin-mediated adhesion and changes in the actin cytoskeleton. The mechanisms that mediate these effects of Rap1 are poorly understood. We have identified RIAM as a Rap1-GTP-interacting adaptor molecule. RIAM defines a family of adaptor molecules that contain a RA-like (Ras association) domain, a PH (pleckstrin homology) domain, and various proline-rich motifs. ...
متن کاملEffects of profilin and profilactin on actin structure and function in living cells
Previous studies have yielded conflicting results concerning the physiological role of profilin, a 12-15-kD actin- and phosphoinositide-binding protein, as a regulator of actin polymerization. We have addressed this question by directly microinjecting mammalian profilins, prepared either from an E. coli expression system or from bovine brain, into living normal rat kidney (NRK) cells. The micro...
متن کاملPAK promotes morphological changes by acting upstream of Rac.
The serine/threonine kinase p21-activated kinase (PAK) has been implicated as a downstream effector of the small GTPases Rac and Cdc42. While these GTPases evidently induce a variety of morphological changes, the role(s) of PAK remains elusive. Here we report that overexpression of betaPAK in PC12 cells induces a Rac phenotype, including cell spreading/membrane ruffling, and increased lamellipo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2008